Macrophage colony-stimulating factor (rM-CSF) stimulates pinocytosis in bone marrow-derived macrophages.

Author:

Racoosin E L1,Swanson J A1

Affiliation:

1. Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115.

Abstract

Incubation of murine bone marrow-derived macrophages (BMM) in medium containing recombinant macrophage colony-stimulating factor (rM-CSF) stimulated influx, efflux, and the net accumulation of the fluid-phase pinocytic marker, lucifer yellow (LY). Stimulation was dose dependent, occurred within 5 min of addition of the growth factor, and was sustained. Previous experiments had shown that BMM treated with PMA were stimulated to accumulate LY, but compared with rM-CSF-treated cells, the onset of stimulation in PMA-treated macrophages was slower. In further comparisons of rM-CSF- and PMA-stimulated LY accumulation, it was found that rM-CSF-stimulated pinocytosis could be abolished by pretreatment with 0.5 mg/ml trypsin, whereas neither unstimulated nor PMA-stimulated LY accumulation was affected by trypsin pretreatment. These findings indicate that the rM-CSF response was initiated at the cell surface, while the PMA response occurred via intracellular (or trypsin-resistant) receptors. However, once initiated, the pinocytic responses elicited by either agent were very similar. First, rM-CSF-treated cells, like PMA-treated cells, showed extensive ruffling and formation of large phase-bright pinosomes. Second, both rM-CSF- and PMA-stimulated LY accumulation could be inhibited by treatment of cells with the cytoskeleton destabilizing drugs nocodazole, colchicine, or cytochalasin D. Finally, rM-CSF, like PMA, was found to stimulate efflux of LY from cells preloaded with the dye. Thus, both rM-CSF and PMA stimulate the net rate of solute flow through the macrophage endocytic compartment.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3