Interaction of lymphokine-activated killer cells with susceptible targets does not induce second messenger generation and cytolytic granule exocytosis.

Author:

Zanovello P1,Rosato A1,Bronte V1,Cerundolo V1,Treves S1,Di Virgilio F1,Pozzan T1,Biasi G1,Collavo D1

Affiliation:

1. Institute of Oncology, Inter-University Center for Cancer Research, Padova, Italy.

Abstract

CTL activation by specific targets leads to a rapid rise of inositol phosphates (InsPs) and of cytoplasmic-free Ca2+ concentration ([Ca2+]i). While these events are considered necessary to trigger granule secretion, Ca2+-independent cytolytic mechanisms have been recently proposed in addition or as an alternative to the classical Ca2+-dependent exocytosis model. We observed that lymphokine-activated killer (LAK) cells, obtained after stimulation with supraoptimal concentrations of IL-2 in short- or long-term cultures, kill susceptible targets in the absence of a [Ca2+]i rise and InsP3 formation. Moreover, LAK cell-mediated lysis was not associated with an increase in cytotoxic granule exocytosis, as evaluated by BLT-esterase release into the culture supernatant. Furthermore, using an antigen-specific CTL clone, which acquires LAK-like activity when cultured in medium containing high IL-2 doses, second messenger generation and cytolytic granule content secretion were not detected during lysis of unrelated target cells, while killing of specific targets triggered both these processes. These findings suggest that two lytic pathways may coexist in the same effector cells: a second messenger-dependent pathway involving degranulation, which is activated after TCR interaction with specific targets, and another pathway, independent of any known second messenger generation, responsible for unrelated target cell lysis.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3