Structural analysis of the human immunodeficiency virus-binding domain of CD4. Epitope mapping with site-directed mutants and anti-idiotypes.

Author:

Sattentau Q J1,Arthos J1,Deen K1,Hanna N1,Healey D1,Beverley P C1,Sweet R1,Truneh A1

Affiliation:

1. Academic Department of Genito Urinary Medicine, University College and Middlesex School of Medicine (UCMSM), London, UK.

Abstract

The CD4 molecule, a differentiation marker expressed primarily by T lymphocytes, plays an important role in lymphocyte activation. CD4 is also the receptor for HIV. A number of recent studies have localized the high affinity binding site of the HIV envelope glycoprotein, gp120, to the NH2-terminal (V1) domain of CD4, a region with sequence and predicted structural homology with Ig kappa chain V domains (V kappa). In this report, we show that V1 bears structural similarities with V kappa regions through detailed epitope mapping of 26 CD4 mAbs. The binding sites of these mAbs were initially defined relative to one another by crossblocking analysis and were then localized to specific domains of CD4 in blocking studies with truncated, soluble CD4 proteins. The epitopes within the V1 domain were mapped in detail with a panel of 17 substitution mutants, and the specificities of several mAbs that appear to recognize very similar epitopes were examined in crossblocking studies with anti-idiotype antibodies. The location of the epitopes is consistent with a V kappa-like structure of V1. Most of the epitopes lie within regions of predicted exposed loops. A number of these epitopes span discontinuous residues in the linear sequence that lies in close proximity in an Ig fold. Alignment of CD4 V1 with the Ig V kappa chains places these epitopes within stretches corresponding to the complimentarity-determining regions. This epitope analysis is relevant for a vaccine strategy for HIV based on anti-idiotype antibodies to CD4 mAbs and for studies with CD4 antibodies on the role of CD4 in T lymphocyte activation.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3