Fc receptor stimulation of phosphatidylinositol 3-kinase in natural killer cells is associated with protein kinase C-independent granule release and cell-mediated cytotoxicity.

Author:

Bonnema J D1,Karnitz L M1,Schoon R A1,Abraham R T1,Leibson P J1

Affiliation:

1. Department of Immunology, Mayo Clinic and Foundation, Rochester, Minnesota 55905.

Abstract

Although diverse signaling events are initiated by stimulation of multichain immune recognition receptors on lymphocytes, it remains unclear as to which specific signal transduction pathways are functionally linked to granule exocytosis and cellular cytotoxicity. In the case of natural killer (NK) cells, it has been presumed that the rapid activation of protein kinase C (PKC) enables them to mediate antibody-dependent cellular cytotoxicity (ADCC) and "natural" cytotoxicity toward tumor cells. However, using cloned human NK cells, we determined here that Fc receptor stimulation triggers granule release and ADCC through a PKC-independent pathway. Specifically, pretreatment of NK cells with the selective PKC inhibitor, GF109203X (using concentrations that fully blocked phorbol myristate acetate/ionomycin-induced secretion) had no effect on FcR-initiated granule release or ADCC. In contrast, FcR ligation led to the rapid activation of phosphatidylinositol 3-kinase (PI 3-kinase), and inhibition of this enzyme with the selective inhibitor, wortmannin, blocked FcR-induced granule release and ADCC. Additional experiments showed that, whereas FcR-initiated killing was wortmannin sensitive and GF109203X insensitive, natural cytotoxic activity toward the tumor cell line K562 was wortmannin insensitive and GF109203X sensitive. Taken together, these results suggest that: (a) PI 3-kinase activation induced by FcR ligation is functionally coupled to granule exocytosis and ADCC; and (b) the signaling pathways involved in ADCC vs natural cytotoxicity are distinct.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3