T cell recognition of carbohydrates on type II collagen.

Author:

Michaëlsson E1,Malmström V1,Reis S1,Engström A1,Burkhardt H1,Holmdahl R1

Affiliation:

1. Department of Medical Inflammation Research, Lund University, Sweden.

Abstract

A critical event in an immune response is the T cell recognition of peptides bound to major histocompatibility complex (MHC) molecules on the surface of an antigen presenting cell (APC). Although the majority of eukaryotic proteins are glycosylated, it has not yet been shown that T cell recognition of such proteins involves recognition of the bound carbohydrates. Type II collagen (CII), the major protein constituent of joint cartilage, is posttranslationally modified by hydroxylation and glycosylation of lysines. In this report we show that posttranslational modifications of the immunodominant peptide CII(256-270) generate a structural determinant that is distinct from the determinant represented by the corresponding synthetic peptide. Elimination of carbohydrates, present on CII, by two different biochemical methods revealed that the carbohydrates, O-linked to the hydroxylysines within the CII(256-270) determinant, were crucial for the reactivity towards the posttranslationally modified peptide. Furthermore, a T cell hybridoma specific for the glycosylated determinant was stimulated by tryptic CII-peptides presented by fixed APCs, thus showing that the carbohydrates are involved in the trimolecular complex T cell receptor/peptide/MHC. Finally, the importance of the bound carbohydrates for the arthritogenicity of CII was investigated by comparing the development of arthritis after immunization with carbohydrate-depleted and glycosylated CII, respectively. Incidence, time of onset, and severity of the disease were significantly affected by the elimination of carbohydrates, whereas no significant difference in anti-CII antibody titers was seen.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3