Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia.

Author:

Kojima K1,Berger T1,Lassmann H1,Hinze-Selch D1,Zhang Y1,Gehrmann J1,Reske K1,Wekerle H1,Linington C1

Affiliation:

1. Department of Neuroimmunology, Max-Planck Institute for Psychiatry, Martinsried, Germany.

Abstract

The pathogenic potential of autoimmune T cell responses to nonmyelin autoantigens was investigated in the Lewis rat using the astrocyte-derived calcium binding protein S100 beta, as a model nonmyelin autoantigen. The Lewis rat mounts a vigorous RT1B1 (major histocompatibility complex class II) restricted autoimmune response to an immunodominant S100 beta epitope (amino acid residues 76-91). The adoptive transfer of S100 beta-specific T cell lines induced a severe inflammatory response in the nervous system, but only minimal neurological dysfunction in naive syngeneic recipients. The inability of S100 beta-specific T cell transfer to induce severe disease was associated with a decreased recruitment of ED1+ macrophages into the central nervous system (CNS) in comparison with that seen in severe experimental autoimmune encephalomyelitis (EAE) induced by the adoptive transfer of myelin basic protein (MBP)-specific T line cells. Moreover, unlike encephalitogenic MBP-specific T cell lines, S100 beta-specific T cell lines exhibited no cytotoxic activity in vitro. Histopathological analysis also revealed striking differences in the distribution of inflammatory lesions in MBP- and S100 beta-specific T cell-mediated disease. In contrast to the MBP paradigm, S100 beta-specific T cell transfer induces intense inflammation not only in the spinal cord, but throughout the entire CNS and also in the uvea and retina of the eye. In view of the distribution of lesions throughout the grey and white matter of the CNS we propose to term this new model experimental autoimmune panencephalomyelitis (EAP) to differentiate it from EAE. These experiments demonstrate for the first time that nonmyelin CNS autoantigens can initiate a pathogenic autoimmune T cell response, although the nature of the target autoantigen profoundly influences the clinical and histopathological characteristics of the resulting autoimmune disease. This is not simply a consequence of the distribution of the autoantigen, as both MBP and S100 beta are coexpressed in many areas of the CNS, but reflects differences in the capacity of different regions of the CNS to process and present specific autoantigens. This new model of T cell-mediated autoimmune CNS disease exhibits a number of similarities to multiple sclerosis (MS), such as its mild clinical course and the involvement of areas of the brain and eye, which are absent in myelin-mediated models of EAE. Nonmyelin autoantigens may therefore play an unexpectedly important role in the immunopathogenesis of inflammatory diseases of the CNS.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insights into multiple sclerosis‐associated uveitis: a scoping review;Acta Ophthalmologica;2020-12-16

2. Intermediate uveitis associated with MS;Neurology - Neuroimmunology Neuroinflammation;2020-10-30

3. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion;Journal of Clinical Investigation;2020-06-22

4. The S100B story: from biomarker to active factor in neural injury;Journal of Neurochemistry;2018-11-12

5. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis;Journal of Neuroscience Research;2018-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3