Calcineurin mediates human tumor necrosis factor alpha gene induction in stimulated T and B cells.

Author:

Goldfeld A E1,Tsai E1,Kincaid R1,Belshaw P J1,Schrieber S L1,Strominger J L1,Rao A1

Affiliation:

1. Division of Tumor Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02114.

Abstract

The tumor necrosis factor alpha (TNF-alpha) gene is rapidly transcribed in activated T cells via a calcium-dependent pathway that does not require de novo protein synthesis, but is completely blocked by the immunosuppressive drugs cyclosporin A (CsA) and FK506. Here we show that calcineurin phosphatase activity is both necessary and sufficient for TNF-alpha gene transcription in T cells, and identify the factor that binds to the kappa 3 element of the TNF-alpha gene promoter as the target for calcineurin action. The ability of analogues of CsA and FK506 to block calcineurin phosphatase activity correlates completely with their ability to inhibit induction of TNF-alpha mRNA, induction of a TNF-alpha promoter reporter plasmid in transiently transfected T cells, and induction of the kappa 3 binding factor in an electrophoretic mobility shift assay. Moreover, a cDNA encoding the constitutively active form of calcineurin is sufficient to activate the TNF-alpha promoter and the kappa 3 element. TNF-alpha gene transcription is also highly inducible, CsA-sensitive, and protein synthesis-independent in B cells stimulated through their surface immunoglobulin receptors. Using the panel of CsA and FK506 analogues, we show that calcineurin participates in the induction of TNF-alpha transcription in activated B cells. These results extend our previous demonstration that the kappa 3 binding factor is related to NFATp, the preexisting subunit of nuclear factor of activated T cells, and suggest that calcineurin-mediated modification of the kappa 3 binding factor in T cells is of key importance in the induction of TNF-alpha transcription.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3