Comparison of cell lines deficient in antigen presentation reveals a functional role for TAP-1 alone in antigen processing.

Author:

Gabathuler R1,Reid G1,Kolaitis G1,Driscoll J1,Jefferies W A1

Affiliation:

1. Biotechnology Laboratory, University of British Columbia, Vancouver, Canada.

Abstract

Cytotoxic T lymphocytes (CTL) recognize antigenic peptides bound to major histocompatibility complex class I antigens on the cell surface of virus-infected cells. It is believed that the majority of peptides originate from cytoplasmic degradation of proteins assumed to be mediated by the "20S" proteasome. Cytosolic peptides are then translocated, presumably by transporters associated with antigen processing (TAP-1 and -2), into the lumen of the endoplasmic reticulum (ER) where binding and formation of the ternary complex between heavy chain, beta2-microglobulin (beta 2m) and peptide occurs. In this study, we have analyzed and compared the phenotype of two mutant cell lines, the thymoma cell line RMA-S and a small lung carcinoma cell line CMT.64, in order to address the mechanism that underlies the antigen processing deficiency of CMT.64 cells. Unlike RMA-S cells, vesicular stomatitis virus (VSV)-infected CMT.64 cells are not recognized by specific CTL. Interferon gamma (IFN-gamma) treatment of CMT.64 cells restores the ability of these cells to process and present VSV in the context of Kb. We show that although CMT.64 cells express a low level of beta 2m, the recognition of VSV-specific CTL is not restored by increasing the amount of beta 2m synthesized in CMT.64 cells. In addition, we find that CMT.64 cells express moderate levels of Kb heavy chain molecules, but most of it is unstable and rapidly degraded in the absence of IFN-gamma treatment. We infer that the antigen processing deficiency does not lie at the level of beta 2m or Kb production. We find also that the mRNAs for both TAP-1 and -2 are present in RMA and RMA-S cells but are absent in uninduced CMT.64 cells. Upon IFN-gamma induction, both mRNAs are highly expressed in CMT-64 cells. In addition, we find that the low molecular mass polypeptides 2 and 7, and additional components of the proteasome are induced by IFN-gamma in CMT-64 cells. Finally, introduction of the rat TAP-1 gene in CMT.64 cells restores CTL recognition of VSV-infected cells. These results indicate that a TAP-1 homodimer may translocate peptides in the ER and explain partially the CMT.64 defect and the RMA-S phenotype. These findings link a dysfunction in the transport and/or generation of antigenic peptides to the capacity of tumor cells to evade immunosurveillance and provide a unique model system to dissect this phenomenon.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3