Affiliation:
1. Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California 94720
Abstract
The heterodimeric CD94/NKG2A receptor, expressed by mouse natural killer (NK) cells, transduces inhibitory signals upon recognition of its ligand, Qa-1b, a nonclassical major histocompatibility complex class Ib molecule. Here we clone and express two additional receptors, CD94/NKG2C and CD94/NKG2E, which we show also bind to Qa-1b. Within their extracellular carbohydrate recognition domains, NKG2C and NKG2E share extensive homology with NKG2A (93–95% amino acid similarity); however, NKG2C/E receptors differ from NKG2A in their cytoplasmic domains (only 33% similarity) and contain features that suggest that CD94/NKG2C and CD94/NKG2E may be activating receptors. We employ a novel blocking anti-NKG2 monoclonal antibody to provide the first direct evidence that CD94/NKG2 molecules are the only Qa-1b receptors on NK cells. Molecular analysis reveals that NKG2C and NKG2E messages are extensively alternatively spliced and ∼20-fold less abundant than NKG2A message in NK cells. The organization of the mouse Cd94/Nkg2 gene cluster, presented here, shows striking similarity with that of the human, arguing that the entire CD94/NKG2 receptor system is relatively primitive in origin. Analysis of synonymous substitution frequencies suggests that within a species, NKG2 genes may maintain similarities with each other by concerted evolution, possibly involving gene conversion–like events. These findings have implications for understanding NK cells and also raise new possibilities for the role of Qa-1 in immune responses.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
198 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献