Joint recognition by cytotoxic T cells of inactivated Sendai virus and products of the major histocompatibility complex.

Author:

Schrader J W1,Edelman G M1

Affiliation:

1. Rockefeller University, New York 10021.

Abstract

Cytotoxic T cells specific for Sendai virus were generated by culturing murine spleen cells in vitro together with UV-inactivated Sendai virus. In vivo immunization of donor mice with UV-inactivated Sendai virus resulted in an in vitro secondary response of increased magnitude. Cytotoxic activity was demonstrated in a short-term 51Cr-release assay, using syngeneic tumor cells which had been coated with inactivated Sendai virus by incubation at 4 degrees C for 30 min. The lysis of Sendai virus-coated target cells was restricted by the H-2 haplotype of the target cells, suggesting that the H-2 genes of the target cell contributed to the specificity of the lysis. Kinetic experiments showed that susceptibility to lysis by cytotoxic T cells specific for Sendai virus appeared within 30 min after coating target cells with inactivated virus. Furthermore, there was no detectable synthesis of new proteins in cells treated with UV-inactivated Sendai virus. For these reasons, we suggest that neither viral replication nor the synthesis of new proteins are necessary for the production of the antigen recognized by cytotoxic cells specific for Sendai virus. We infer that the virus-specific component on the target cells is probably a preformed virion antigen adsorbed onto or integrated into the cell membrane. These results imply that, if the cytotoxic T cell recognizes a single antigenic determinant specified both by viral and H-2 genes, this determinant is formed by the physical association of H-2 and Sendai virus antigens rather than by their alteration during the processes of synthesis.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3