Hapten-specific hemolytic plaque assays usually fail to detect most of the diversity in the anti-hapten response.

Author:

Merchant B,Inman J K

Abstract

Immunization of rabbits or mice with a single, chemically defined hapten elicits populations of plaque-forming cells (PFC) detectable not only on sheep erythrocytes (SRBC) bearing the immunizing hapten, but also on SRBC bearing structural analogues of the immunizing hapten. Most of these analogue-reactive PFC preferentially lyse analogue-conjugated SRBC and cannot be detected on erythrocytes bearing the immunizing hapten. Thus, they represent heretofore largely unstudied components of the secretory B-cell response to haptenic immunization, and they have been termed alloreactive PFC. Such alloreactive PFC are detectable using either classical small haptens or tripeptide-enlarged counterparts of these classical haptens. They are present in large numbers both in direct and in indirect PFC assays, and they are elicited in response to both thymic-dependent and thymic-independent antigens. Relatively few alloreactive PFC can be attributed to cells producing hapten-carrier or "bridge area"-specific antibodies. Since the antibodies released by alloreactive PFC can also be detected by passive hemagglutination, their presence does not appear attributable to vagaries of complement activation. Numerous coexisting alloreactive PFC populations are detectable after haptenic immunization. In early direct PFC responses it is not nucommon for a single alloreactive PFC population to outnumber the population of PFC detectable on SRBC bearing the actual immunizing hapten. These alloreactive PFC may be the source of at least some of the new "nonspecific" Ig which is formed at the time of immunization but about which little is known for lack of available techniques. Some possible implications of these findings on the specificity of B precursor cell activation are discussed.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3