Affiliation:
1. Immunology Division, University of Rochester School of Medicine and Dentistry, New York 14642.
Abstract
Treatment of the WEHI-2131 or CH31 B cell lymphomas with anti-mu or transforming growth factor (TGF)-beta leads to growth inhibition and subsequent cell death via apoptosis. Since anti-mu stimulates a transient increase in c-myc and c-fos transcription in these lymphomas, we examined the role of these proteins in growth regulation using antisense oligonucleotides. Herein, we demonstrate that antisense oligonucleotides for c-myc prevent both anti-mu- and TGF-beta-mediated growth inhibition in the CH31 and WEHI-231 B cell lymphomas, whereas antisense c-fos has no effect. Furthermore, antisense c-myc promotes the appearance of phosphorylated retinoblastoma protein in the presence of anti-mu and prevents the progression to apoptosis as measured by propidium iodide staining. Northern and Western analyses show that c-myc message and the levels of multiple myc proteins were maintained in the presence of antisense c-myc, results indicating that myc species are critical for the continuation of proliferation and the prevention of apoptosis. These data implicate c-myc in the negative signaling pathway of both TGF-beta and anti-mu.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
99 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献