The type II "receptor" as a decoy target for interleukin 1 in polymorphonuclear leukocytes: characterization of induction by dexamethasone and ligand binding properties of the released decoy receptor.

Author:

Re F1,Muzio M1,De Rossi M1,Polentarutti N1,Giri J G1,Mantovani A1,Colotta F1

Affiliation:

1. Istituto di Ricerche Farmacologiche Mario Negri, Centro Daniela e Catullo Borgomainerio, Milano, Italy.

Abstract

Whereas the signaling function of the interleukin 1 (IL-1) receptor type I (IL-1R I) has been well documented, the type II "receptor" has been suggested to act as a decoy target for this cytokine. Since IL-1 may represent a key target of the immunomodulatory and antiinflammatory properties of glucocorticoids (GC), the aim of this study was to investigate the effects of dexamethasone (Dex) on IL-1R expression in human polymorphonuclear leukocytes (PMN), which express predominantly the type II molecule (IL-1R II). We found that Dex augments the levels of steady state transcripts encoding the IL-1R I and, most prominently, those of IL-1R II. Dex induced both transcripts via transcription-dependent mechanisms and by prolongation of the mRNAs half-lives. Inhibition of protein synthesis superinduced basal and Dex-augmented IL-1R II mRNA, whereas it completely inhibited the induction by Dex of IL-1R I transcripts. Induction of IL-1R II mRNA by Dex was associated with augmented membrane expression and release of the type II IL-1 binding molecule. This effect was mediated by the GC receptor. Other steroids (17 beta-estradiol, progesterone, and testosterone) were ineffective. The concentrations of IL-1 alpha and IL-1 receptor antagonist required to displace the binding of IL-1 beta to the soluble form of the decoy molecule induced by Dex from PMN were, respectively, 100 and 2 times higher compared with IL-1 beta. The induction by Dex of the type II receptor, a decoy molecule for IL-1, may contribute to the immunosuppressive and antiinflammatory activities of Dex.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3