The B cell-specific transcription factor BSAP regulates B cell proliferation.

Author:

Wakatsuki Y1,Neurath M F1,Max E E1,Strober W1

Affiliation:

1. Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892.

Abstract

The B cell-specific activator protein (BSAP) is a DNA-binding transcription factor expressed in pro-B, pre-B, and mature B cells, but not in plasma cells. In this study, we explored the role of BSAP in B cell function by assessing how the content of this protein varies in cells driven by proliferative stimuli and, conversely, how artificial manipulation of BSAP activity affects cell proliferation. We found that BSAP activity of nuclear extracts increased when B cells were activated by mitogen (lipopolysaccharide [LPS]), antigen receptor-mediated signaling (surface immunoglobulin D [IgD] cross-linking) or T cell-dependent stimulation (CD40 cross-linking). We could suppress BSAP activity by exposure of B cells to phosphorothioate oligonucleotides antisense to the BSAP translation initiation start site, whereas control oligonucleotides were virtually inactive. Antisense-induced BSAP suppression was associated with a striking reduction in LPS-induced proliferation of splenic B cells and in the spontaneous proliferation of B lymphoma cells (CH12.LX), but the antisense oligonucleotide had virtually no effect on proliferation of two cell lines lacking BSAP: the T lymphoma line EL-4 and the plasma cell line MOPC-315. Overexpression of BSAP in splenic B cells or de novo expression in MOPC-315 plasma cells induced by transfection of a BSAP expression plasmid stimulated cell proliferation. Taken together, these results suggest that BSAP activity is a rate-limiting regulator of B cell proliferation. We also found that treatment with the antisense BSAP oligonucleotide downregulated Ig class switching induced by interleukin 4 plus LPS. This effect may be secondary to reduced proliferation or could be mediated through BSAP binding sites in the IgH locus.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3