Reversal of Tumor-induced Dendritic Cell Paralysis by CpG Immunostimulatory Oligonucleotide and Anti–Interleukin 10 Receptor Antibody

Author:

Vicari Alain P.1,Chiodoni Claudia2,Vaure Céline1,Aït-Yahia Smina1,Dercamp Christophe1,Matsos Fabien1,Reynard Olivier1,Taverne Catherine1,Merle Philippe3,Colombo Mario P.2,O'Garra Anne4,Trinchieri Giorgio1,Caux Christophe1

Affiliation:

1. Schering-Plough Laboratory for Immunological Research, 69571 Dardilly, France

2. Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, 20133 Milano, Italy

3. Institut National de la Sante et de la Recherche Medicale U271, 69424 Lyon, France

4. DNAX Research Institute, Palo Alto, CA 94304

Abstract

Progressing tumors in man and mouse are often infiltrated by dendritic cells (DCs). Deficient antitumor immunity could be related to a lack of tumor-associated antigen (TAA) presentation by tumor-infiltrating DCs (TIDCs) or to a functional defect of TIDCs. Here we investigated the phenotype and function of TIDCs in transplantable and transgenic mouse tumor models. Although TIDCs could encompass various known DC subsets, most had an immature phenotype. We observed that TIDCs were able to present TAA in the context of major histocompatibility complex class I but that they were refractory to stimulation with the combination of lipopolysaccharide, interferon γ, and anti-CD40 antibody. We could revert TIDC paralysis, however, by in vitro or in vivo stimulation with the combination of a CpG immunostimulatory sequence and an anti-interleukin 10 receptor (IL-10R) antibody. CpG or anti–IL-10R alone were inactive in TIDCs, whereas CpG triggered activation in normal DCs. In particular, CpG plus anti–IL-10R enhanced the TAA-specific immune response and triggered de novo IL-12 production. Subsequently, CpG plus anti–IL-10R treatment showed robust antitumor therapeutic activity exceeding by far that of CpG alone, and elicited antitumor immune memory.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 313 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3