Degradation of serum amyloid A protein by surface-associated enzymes of human blood monocytes.

Author:

Lavie G,Zucker-Franklin D,Franklin E C

Abstract

Peripheral blood monocytes incubated in a serum-free medium degraded serum amyloid A (SAA) protein along three pathways. Of 20 normal subjects, 8 degraded SAA completely with no detectable intermediates. Eight subjects transiently produced an amyloid A (AA)-like intermediate which comigrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) with tissue AA protein and reacted with antisera to AA, whereas four subjects yielded a persistent AA-like intermediate on PAGE. This group also failed to degrade tissue AA protein. Cells from 10 patients with amyloidosis fell into the second group. The responsible enzymes appear to be serine proteases because they are inhibited by disopropyl fluorophosphate. They were not affected by epsilon-amino caproic acid, L-1-tosylamide-2-phenylethyl chloromethyl ketone, or N-alpha-p-tosyl-L-lysine chlormethyl ketone. It appears possible that the enzymes are associated with the outer membrane of the cell because only a small fraction of the activity is secreted into the medium and because enzyme activity remains after fixation of the cells with glutaraldehyde which completely stops phagocytosis. Perhaps differences in patterns of proteolysis may play a role in the predisposition to amyloidosis.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 203 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Endocytosis in β-amyloid biology and Alzheimer’s disease;Autophagy Dysfunction in Alzheimer's Disease and Dementia;2022

2. Advanced systemic amyloidosis secondary to metastatic renal cell carcinoma;ecancermedicalscience;2020-12-15

3. Serum amyloid A: A potential biomarker of lung disorders;Respiratory Investigation;2020-01

4. Multiplex Assay for Quantification of Acute Phase Proteins and Immunoglobulin A in Dried Blood Spots;Journal of Proteome Research;2018-11-20

5. Serum amyloid A – a review;Molecular Medicine;2018-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3