A synthetic peptide induces long-term protection from lethal infection with herpes simplex virus 2.

Author:

Watari E,Dietzschold B,Szokan G,Heber-Katz E

Abstract

Immunization against viral pathogens is generally directed toward the induction of virus neutralizing antibody (VNA) and the maintenance of the potential for a second-set (IgG) response. Indeed, an elevated level of specific antibody is considered a reliable clinical indicator that a state of immunity exists in the host. However, in the case of herpes simplex virus (HSV), the presence of circulating VNA does not necessarily correlate with protection. Thus, it has been found that secondary infections occur in individuals even with high neutralizing titers to HSV, suggesting that antibody to the virus may be useless or even deleterious. In consideration of these facts, we were interested in inducing a T cell response to HSV. We had already shown that synthetic peptides corresponding to the NH3-terminal region of the glycoprotein D (gD) molecule of HSV could induce a strong T cell response when injected into mice, but did not, by themselves, confer protection. In this report, we examined the ability of peptides, covalently coupled to palmitic acid and incorporated into liposomes, to induce virus-specific T cell responses that confer protection against a lethal challenge of HSV-2. We have demonstrated that long-term protective immunity is achieved with a single immunization in the absence of neutralizing antibody when antigen is presented in this form. Furthermore, T cells but not serum from such immune mice can adoptively transfer this protection.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3