Pseudo-high affinity interleukin 2 (IL-2) receptor lacks the third component that is essential for functional IL-2 binding and signaling.

Author:

Arima N1,Kamio M1,Imada K1,Hori T1,Hattori T1,Tsudo M1,Okuma M1,Uchiyama T1

Affiliation:

1. First Division of Internal Medicine, Faculty of Medicine, Kyoto University, Japan.

Abstract

Functional studies of the interleukin 2 receptor (IL-2R) of two (ED515-D and Kit225) IL-2-dependent and three (ED515-I, 3T3-alpha beta 11, and Hut102) IL-2-independent cell lines were done. All of these cell lines appeared to express high as well as low affinity IL-2R. However, ED515-I and 3T3-alpha beta 11, which expressed the IL-2R beta chain, did not bind IL-2 at all when IL-2 binding to their IL-2R alpha chain was blocked with anti-Tac monoclonal antibody, whereas the intermediate affinity binding in ED515-D, Kit225, and Hut102 cells remained. We tentatively called the high affinity IL-2R of the former cells pseudo-high affinity IL-2R. The dissociation constant of pseudo-high affinity IL-2R was higher than that of ordinary high affinity IL-2R. Internalization of cell-bound 125I-IL-2 into ED515-I and 3T3-alpha beta 11 cells was less efficient than that into ED515-D cells. The addition of IL-2 neither promoted cell growth nor upregulated IL-2R alpha chain expression in ED515-I and 3T3-alpha beta 11 cells. Furthermore, tyrosine phosphorylation of the cellular proteins (p120, p98, p96, p54, and p38) was induced or enhanced in response to the addition of IL-2 in ED515-D and Kit225 cells, but not in the cell lines expressing pseudo-high affinity IL-2R. Finally, 125I-IL-2 crosslinking followed by SDS-PAGE analysis showed an 80-kD band corresponding to p65 + IL-2, in addition to bands corresponding to IL-2R alpha and beta chain + IL-2 in cells bearing ordinary high affinity IL-2R but not in cells with pseudo-high affinity IL-2R. Taken together, we consider that another protein whose molecular mass is approximately 65 kD is functionally important in IL-2 binding and subsequent signal transduction and may be the third component of IL-2R.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3