Cellular basis of skin allograft rejection across a class I major histocompatibility barrier in mice depleted of CD8+ T cells in vivo.

Author:

Rosenberg A S1,Munitz T I1,Maniero T G1,Singer A1

Affiliation:

1. Cytokine Biology Division, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892.

Abstract

The present study was undertaken to define the cellular mechanisms involved in the rejection of major histocompatibility complex (MHC) class I disparate skin grafts by mice depleted of CD8+ T cells in vivo. Mice were effectively depleted of CD8+ T cells by adult thymectomy followed by in vivo administration of anti-CD8 monoclonal antibody (mAb) and then engrafted with allogeneic skin. We found that CD8 depleted mice did reject MHC class I disparate skin grafts, but only when the grafts also expressed additional alloantigens. Despite the marked depletion of CD8+ T cells in these mice, we found that their rejection of MHC class I disparate grafts was mediated by CD8+ cytolytic T lymphocyte (CTL) effectors that had escaped depletion. These CD8+ CTL effectors were unique in that: (a) their generation was dependent upon the injected anti-CD8 mAb and upon exposure to class I MHC alloantigens expressed on the engrafted skin, and (b) their effector function was resistant to blockade by anti-CD8 mAb. We observed that the additional alloantigens coexpressed on MHC class I disparate grafts that triggered graft rejection in CD8-depleted mice could be MHC-linked or not and that they functioned in these rejection responses to activate third party specific CD4+ T helper (Th) cells to provide helper signals for the generation of CD8+ anti-CD8 resistant CTL effector cells. Thus, mice depleted of CD8+ T cells by thymectomy and in vivo administration of anti-CD8 mAb harbor a unique population of anti-CD8 resistant, CD8+ effector cells that mediate anti-MHC class I responses in vivo and in vitro, but require help from third party specific Th cells to do so.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3