The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils.

Author:

Showell H J,Freer R J,Zigmond S H,Schiffmann E,Aswanikumar S,Corcoran B,Becker E L

Abstract

24 di-, tri-, and tetrapeptides have been synthesized as a start of a systematic study of the structural requirements for chemotactic activity and lysosomal enzyme-releasing ability in rabbit neutrophils. All but two of them are N-formyl methionyl peptides. Using the method of Zigmond and Hirsch (10), two representative peptides, F-Met-Leu-Phe and F-Met-Met-Met, were shown to stimulate directed, as well as, random locomotion; thus, they were truly chemotactic. The various peptides showed a wide spread in activity. F-Met-Leu-Phe, the most active peptide studied, had an ED50 for induced migration of 7 X 10(-11) M and for lysozyme and beta-glucuronidase release of 2.4 X 10(-10) M and 2.6 X 10(-10) M, respectively; the least active, Met-Leu-Glu was 26 million times less active in these respects. The relation of activity to structure is exceedingly specific, very small changes in structure making large changes in activity. Moreover, this specificity exhibits a definite regularity and pattern; the activity of a given peptide depends not only on its constituent amino acids but on the position of the amino acid in the peptide chain. Most striking in this last regards is the high activity conferred by phenylalanine when it is in the carboxyl terminal position of a tripeptide, whereas, as the second amino acid from the NH2 terminal end whether in a tripeptide or a dipeptide, it contributes no more to the activity than other amino acids with hydrophobic side chains such as leucine or methionine. The high activity and the specificity and nature of the structural requirements strongly suggest that the primary interaction of peptide and neutrophil leading to either chemotaxis or lysosomal enzyme release is a binding of the peptide with a stereospecific receptor on the neutrophil surface. Whether all chemotactic factors act through the same receptor is not known. An essentially exact correlation exists between the concentrations of the various synthetic peptides required to induce migration and their ability to induce release of lysozyme or beta-glucuronidase. This implies that these two neutrophil functions are triggered by teh same primary interaction; possibly, the binding of the peptides to the same putative receptor. A higher concentration of a given peptide is required to stimulate lysosomal enzyme release than a corresponding migratory response. A slightly but significantly higher concentration of peptide is required to induce beta-glucuronidase secretion than lysozyme release.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3