Affiliation:
1. Department of Immunology, Howard Hughes Medical Institute, and Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
2. Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021
Abstract
T cell receptor (TCR) ligation is required for the extrathymic differentiation of forkhead box p3+ (Foxp3+) regulatory T cells. Several lines of evidence indicate that weak TCR stimulation favors induction of Foxp3 in the periphery; however, it remains to be determined how TCR ligand potency influences this process. We characterized the density and affinity of TCR ligand favorable for Foxp3 induction and found that a low dose of a strong agonist resulted in maximal induction of Foxp3 in vivo. Initial Foxp3 induction by weak agonist peptide could be enhanced by disruption of TCR–peptide major histocompatibility complex (pMHC) interactions or alteration of peptide dose. However, time course experiments revealed that Foxp3-positive cells induced by weak agonist stimulation are deleted, along with their Foxp3-negative counterparts, whereas Foxp3-positive cells induced by low doses of the strong agonist persist. Our results suggest that, together, pMHC ligand potency, density, and duration of TCR interactions define a cumulative quantity of TCR stimulation that determines initial peripheral Foxp3 induction. However, in the persistence of induced Foxp3+ T cells, TCR ligand potency and density are noninterchangeable factors that influence the route to peripheral tolerance.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
231 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献