Evolution of Peroxisome Proliferator-Activated Receptor Agonists

Author:

Chang Feng1,Jaber Linda A2,Berlie Helen D3,O'Connell Mary Beth4

Affiliation:

1. Feng Chang PharmD, at the time of writing, Geriatric Pharmacotherapy Resident, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI; now, Elder Care Practitioner, North York General Hospital, North York, Ontario, Canada

2. Linda A Jaber PharmD, Associate Professor, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University

3. Helen D Berlie PharmD, Diabetes Fellow, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University

4. Mary Beth O'Connell PharmD BCPS, Associate Professor, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University

Abstract

OBJECTIVE: To discuss the evolution of peroxisome proliferator-activated receptor (PPAR) agonists from single site to multiple subtype or partial agonists for the treatment of type 2 diabetes, dyslipidemia, obesity, and the metabolic syndrome. DATA SOURCES: Information was obtained from MEDLINE (1966-March 2007) using search terms peroxisome proliferator-activated receptor agonist, PPAR dual agonist, PPAR α/γ agonist, PPAR pan agonist, partial PPAR, and the specific compound names. Other sources included pharmaceutical companies, the Internet, and the American Diabetes Association 64th-66th Scientific Sessions abstract books. STUDY SELECTION AND DATA EXTRACTION: Animal data, abstracts, clinical trials, and review articles were reviewed and summarized. DATA SYNTHESIS: PPAR α, γ, and δ receptors play an important role in lipid metabolism, regulation of adipocyte proliferation and differentiation, and insulin sensitivity. The PPAR dual agonists were developed to combine the triglyceride lowering and high-density lipoprotein cholesterol elevation from the PPAR-α agonists (fibrates) with the insulin sensitivity improvement from the PPAR-γ agonists (thiazolidinediones). Although the dual agonists reduced hemoglobin A1C(A1C) and improved the lipid profile, adverse effects led to discontinued development. Currently, PPAR-γ agonists (GW501516 in Phase I trials), partial PPAR-γ agonists (metaglidasen in Phase II and III trials), and pan agonists (α, γ, δ netoglitazone in Phase II and III trials) with improved cell and tissue selectivity are undergoing investigation to address multiple aspects of the metabolic syndrome with a single medication. By decreasing both A1C and triglycerides, metaglidasen did improve multiple aspects of the metabolic syndrome with fewer adverse effects than compared with placebo. Metaglidasen is now being compared with pioglitazone. CONCLUSIONS: Influencing the various PPARs results in improved glucose, lipid, and weight management, with effects dependent on full or partial agonist activity at single or multiple receptors. Although the dual PPAR compounds have been associated with unacceptable toxicities, new PPAR agonist medications continue to be developed and investigated to discover a safe drug with benefits in multiple disease states.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3