Diagnosis and Treatment of Extended-Spectrum and AmpC β-Lactamase–Producing Organisms

Author:

Yang Katherine1,Guglielmo B Joseph2

Affiliation:

1. Department of Clinical Pharmacy, School of Pharmacy, University of California at San Francisco, San Francisco, CA

2. Department of Clinical Pharmacy, School of Pharmacy, University of California at San Francisco

Abstract

Objective: To review the laboratory diagnosis of extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase–producing bacteria and evaluate potential treatment options. Data Sources: A PubMed search, restricted to English-language articles, was conducted (1966–May 2007) using the search terms ESBL, AmpC, diagnosis, detection, carbapenem, ertapenem, fluoroquinolone, cephalosporin, cefepime, tigecycline, and colistin. Additional references were identified through review of bibliographies of identified articles. Study Selection and Data Extraction: All studies that evaluated laboratory methods for the detection of ESBLs and AmpC β-lactamases and/or the treatment of these organisms were reviewed. All articles that were deemed to be clinically pertinent were included and critically evaluated. Data Synthesis: Numerous laboratory techniques are available for the detection of ESBLs. In contrast, laboratory techniques for detection of AmpC β-lactamases are limited, particularly for plasmid-mediated AmpC β-lactamases. Routine microbiologic testing may not detect ESBLs or AmpC β-lactamases. Optimal antibiotic treatment options are derived from limited observational studies and case reports. Randomized clinical trials evaluating appropriate antibiotic treatment options are lacking. In vitro susceptibility does not always correlate with clinical outcomes. The use of imipenem was associated with the lowest incidence of mortality in patients with bacteremia due to ESBL-producing organisms. Conclusions: Laboratory detection of ESBLs for most organisms is possible with Clinical and Laboratory Standards Institute–recommended testing. However, these tests can be associated with both false negative and false positive results, particularly with organisms that harbor both ESBL- and plasmid-mediated AmpC β-lactamases. No established guidelines exist for the detection of AmpC β-lactamases. Imipenem and meropenem are superior to other antibiotics for the treatment of serious infections due to ESBL and AmpC β-lactamase–producing gram-negative bacteria. While in vitro data demonstrate that tigecycline, ertapenem, and colistin might be potential choices, clinical experience is lacking.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3