Validation of a Muscle-Specific Tissue Image Analysis Tool for Quantitative Assessment of Dystrophin Staining in Frozen Muscle Biopsies

Author:

Aeffner Famke1,Faelan Crystal1,Moore Steven A.1,Moody Alexander1,Black Joshua C.1,Charleston Jay S.1,Frank Diane E.1,Dworzak Johannes1,Piper J. Kris1,Ranjitkar Manish1,Wilson Kristin1,Kanaly Suzanne1,Rudmann Daniel G1,Lange Holger1,Young G. David1,Milici Anthony J.1

Affiliation:

1. From Flagship Biosciences Inc, Westminster, Colorado (Drs Aeffner, Faelan, Black, Wilson, Kanaly, Rudmann, Lange, Young, and Milici and Mr Moody); the Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City (Dr Moore); and Sarepta Therapeutics Inc, Cambridge, Massachusetts (Drs Charleston and Frank and Messrs Dworzak, Piper, and Ranjitkar). Dr Moore is now with Oregon H

Abstract

Context.— Duchenne muscular dystrophy is a rare, progressive, and fatal neuromuscular disease caused by dystrophin protein loss. Common investigational treatment approaches aim at increasing dystrophin expression in diseased muscle. Some clinical trials include assessments of novel dystrophin production as a surrogate biomarker of efficacy, which may predict a clinical benefit from treatment. Objectives.— To establish an immunofluorescent scanning and digital image analysis workflow that provides an objective approach for staining intensity assessment of the immunofluorescence dystrophin labeling and determination of the percentage of biomarker-positive fibers in muscle cryosections. Design.— Optimal and repeatable digital image capture was achieved by a rigorously qualified fluorescent scanning process. After scanning qualification, the MuscleMap (Flagship Biosciences, Westminster, Colorado) algorithm was validated by comparing high-power microscopic field total and dystrophin-positive fiber counts obtained by trained pathologists to data derived by MuscleMap. Next, the algorithm was tested on whole-slide images of immunofluorescent-labeled muscle sections from Duchenne muscular dystrophy, Becker muscular dystrophy, and control patients. Results.— When used under the guidance of a trained pathologist, the digital image analysis tool met predefined validation criteria and demonstrated functional and statistical equivalence with manual assessment. This work is the first, to our knowledge, to qualify and validate immunofluorescent scanning and digital tissue image-analysis workflow, respectively, with the rigor required to support the clinical trial environments. Conclusions.— MuscleMap enables analysis of all fibers within an entire muscle biopsy section and provides data on a fiber-by-fiber basis. This will allow future clinical trials to objectively investigate myofibers' dystrophin expression at a greater level of consistency and detail.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3