A Multiplex Technology Platform for the Rapid Analysis of Clinically Actionable Genetic Alterations and Validation for BRAF p.V600E Detection in 1549 Cytologic and Histologic Specimens

Author:

Smith David L.1,Lamy Aude1,Beaudenon-Huibregtse Sylvie1,Sesboüé Richard1,Laosinchai-Wolf Walairat1,Sabourin Jean-Christophe1,Labourier Emmanuel1

Affiliation:

1. From Asuragen Inc, Austin, Texas, (Drs Smith, Beaudenon-Huibregtse, Laosinchai-Wolf, and Labourier); the Department of Pathology, Rouen University Hospital, Rouen, France (Drs Lamy and Sabourin); and INSERM U1079, Faculty of Medicine, Rouen University, Rouen, France (Dr Sesboüé).

Abstract

Context.—Current clinicopathologic assessment of malignant neoplastic diseases entails the analysis of specific genetic alterations that provide diagnostic, prognostic, or therapy-determining information. Objective.—To develop and validate a robust molecular method to detect clinically relevant mutations in various tissue types and anatomic pathology specimens. Design.—Genes of interest were amplified by multiplex polymerase chain reaction and sequence variants identified by liquid bead array cytometry. The BRAF assay was fully characterized by using plasmids and genomic DNA extracted from cell lines, metastatic colorectal cancer formalin-fixed, paraffin-embedded (FFPE) tissues, and thyroid nodule fine-needle aspirates. Results.—Qualitative multiplex assays for 22 different mutations in the BRAF, HRAS, KRAS, NRAS, or EGFR genes were established. The high signal-to-noise ratio of the technology enabled reproducible detection of BRAF c.1799T>A (p.V600E) at 0.5% mutant allele in 20 ng of genomic DNA. Precision studies with multiple operators and instruments showed very high repeatability and reproducibility with 100% (98.7%–100%) qualitative agreement among 292 individual measures in 38 runs. Evaluation of 1549 representative pathologic specimens in 2 laboratories relative to independent reference methods resulted in 99.0% (97.6%–99.6%) agreement for colorectal FFPE tissues (n = 416) and 98.9% (98.2%–99.4%) for thyroid fine-needle aspiration specimens (n = 1133) with an overall diagnostic odds ratio of 10 856 (2451–48 078). Conclusions.—The multiplex assay system is a sensitive and reliable method to detect BRAF c.1799T>A mutation in colorectal and thyroid lesions. This optimized technology platform is suitable for the rapid analysis of clinically actionable genetic alterations in cytologic and histologic specimens.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3