High-Resolution Melting Analysis as a Sensitive Prescreening Diagnostic Tool to Detect KRAS, BRAF, PIK3CA, and AKT1 Mutations in Formalin-Fixed, Paraffin-Embedded Tissues

Author:

Ney Jasmin Teresa,Froehner Stefanie,Roesler Angelika,Buettner Reinhard,Merkelbach-Bruse Sabine

Abstract

Context.—As the availability of targeted therapies for several tumor types increases, the need for rapid and sensitive mutation screening is growing. KRAS mutations constitutively activate the RAS/RAF/mitogen-activated protein kinase (MAPK) pathway and therefore play an important role in anti–epidermal growth factor receptor therapy for patients with colorectal cancers. Mutationally activated PIK3CA and AKT1 genes are promising therapeutic targets in breast cancer. In 60% to 70% of malignant melanomas, a mutation in BRAF can be found. Thus, the blocking of the oncogenic signaling induced by this mutation is now used as treatment approach.Objective.—To establish high-resolution melting assays for routinely used predictive analyses of KRAS, AKT1, PIK3CA, and BRAF mutations.Design.—High-resolution melting assays were developed by using specifically designed primers and genomic DNA isolated either from cell lines or formalin-fixed paraffin-embedded tissues, oligonucleotides, or plasmids. Melting curve analyses were performed on the LightCyler platform and mutation analyses were additionally confirmed by Sanger sequencing.Results.—We developed high-resolution melting assays by using genomic DNA containing the desired mutation, which enabled us to detect percentages of mutated DNA (3.1% to 12.5%) mixed in a wild-type background. Assays were evaluated by hybridization probes and/or Sanger sequencing to exclude pseudogene amplification. The high-resolution melting assays were validated with genomic DNA from different tumor entities. The concordance between Sanger sequencing and high-resolution melting was 99% for KRAS exon 2 and PIK3CA exon 20 and 100% for the remaining assays.Conclusions.—High-resolution melting provides a valid and powerful tool for detecting genomic mutations efficiently.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3