Ex Vivo Confocal Fluorescence Microscopy for Rapid Evaluation of Tissues in Surgical Pathology Practice

Author:

Krishnamurthy Savitri,Cortes Andrea,Lopez Mirtha,Wallace Michael,Sabir Sharjeel,Shaw Kenna,Mills Gordon1

Affiliation:

1. From the Departments of Pathology and Laboratory Medicine (Dr Krishnamurthy) and Interventional Radiology (Ms Cortes and Drs Wallace and Sabir), the Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (Ms Lopez and Drs Shaw and Mills), and the Department of Systems Biology (Dr Mills), The University of Texas MD Anderson Cancer Center, Houston.

Abstract

Context.— Optical imaging techniques are currently available for imaging tissues without the need for any type of extensive tissue preparation. There are several applications for their potential use in surgical pathology practice. Objective.— To evaluate the feasibility of using a confocal fluorescence microscopy (CFM) platform for ex vivo examination of tissues obtained from surgical resections of breast, lung, kidney, and liver. Design.— Tissue fragments (0.5–1.0 cm) were immersed in 0.6 mM acridine orange for 6 seconds and imaged using a CFM platform at a 488-nm wavelength. The imaged tissues were subsequently fixed in formalin and processed routinely to generate hematoxylin-eosin–stained tissue sections. Mosaics of the grayscale CFM images were studied at different magnifications for recognition of the tissue and were compared with conventional histopathologic examination of hematoxylin-eosin tissue sections. Results.— We imaged 55 tissue fragments obtained from 16 breast (29%), 18 lung (33%), 14 kidney (25%), and 7 liver (13%) surgical excision specimens. Acridine orange labeled the nuclei, creating the contrast between nucleus and cytoplasm and thereby recapitulating the tissue architecture. We could obtain CFM images of good quality within 5 to 10 minutes that allowed recognition of the cytomorphologic details for categorization of the imaged tissue and were similar to histologic examination of hematoxylin-eosin tissue sections. Conclusions.— The ease and speed of acquisition of CFM images together with the resolution and resemblance of the CFM images to hematoxylin-eosin sections suggest that the CFM platform has excellent potential for use in surgical pathology practice.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3