An Automatable Method for Determining Adequacy of Thyroid Fine-Needle Aspiration Samples

Author:

Schmolze Daniel B.1,Fischer Andrew H.1

Affiliation:

1. From the Department of Pathology, City of Hope National Medical Center, Duarte, California (Dr Schmolze); and the Department of Pathology, University of Massachusetts Medical School, Worcester (Dr Fischer).

Abstract

Context.— Thyroid nodules are a common clinical problem. Cytologic evaluation via fine-needle aspiration is often employed in the diagnostic workup, and rapid on-site assessment of adequacy can help ensure an adequate sample is obtained. However, rapid on-site assessment of adequacy only examines part of the sample, a part that may not then be available for ancillary testing. Moreover, the procedure is time-consuming and poorly reimbursed. Objective.— To develop an automatable fluorescence-based image analysis system for assessing the adequacy of thyroid fine-needle aspirations that uses the entire aspirated sample. Design.— There were 12 previously diagnosed cases that served as a training set, and 11 cases were used for validation of an image analysis algorithm. The samples were fluorescently stained and imaged using a fluorescent microscope. The images were assessed for adequacy by an image analysis algorithm. Following image analysis, a ThinPrep slide was prepared and blindly scored by a cytopathologist. The standard and computer-derived results were then compared. Results.— The algorithm was optimized using the 12 cases in the training set and then applied to the 11 test cases. A total of 8 of 8 adequate samples in the test group were correctly scored as adequate, and 2 of 3 cases that were inadequate were correctly scored as inadequate by the algorithm. One case was erroneously designated as not adequate by the algorithm. Conclusions.— Our results demonstrate the feasibility of automating thyroid adequacy assessment using a fluorescent labeling technique followed by computer image analysis.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3