Abstract
Context.—
In the recently updated World Health Organization (WHO) classification of central nervous system tumors, our concept of infiltrating gliomas as a molecular dichotomy between oligodendroglial and astrocytic tumors has been codified. Advances in animal models of glioma and a wealth of sophisticated molecular analyses of human glioma tissue have led to a greater understanding of some of the biologic underpinnings of gliomagenesis.
Objective.—
To review our understanding of gliomagenesis in the setting of the recently updated WHO classification of central nervous system tumors. Topics addressed include a summary of an updated diagnostic schema for infiltrating gliomas, the crucial importance of isocitrate dehydrogenase mutations, candidate cells of origin for gliomas, environmental and other posited contributing factors to gliomagenesis, and the possible role of chromatin topology in setting the stage for gliomagenesis.
Data Sources.—
We conducted a primary literature search using PubMed.
Conclusions.—
With multidimensional molecular data sets spanning increasingly larger numbers of patients with infiltrating gliomas, our understanding of the disease at the point of surgical resection has improved dramatically and this understanding is reflected in the updated WHO classification. Animal models have demonstrated a diversity of candidates for glioma cells of origin, but crucial questions remain, including the role of neural stem cells, more differentiated progenitor cells, and glioma stem cells. At this stage the increase in data generated from human samples will hopefully inform the creation of newer animal models that will recapitulate more accurately the diversity of gliomas and provide novel insights into the biologic mechanisms underlying tumor initiation and progression.
Publisher
Archives of Pathology and Laboratory Medicine
Subject
Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献