A Digital Pathology Solution to Resolve the Tissue Floater Conundrum

Author:

Pantanowitz Liron12,Michelow Pamela2,Hazelhurst Scott3,Kalra Shivam45,Choi Charles5,Shah Sultaan5,Babaie Morteza4,Tizhoosh Hamid R.4

Affiliation:

1. From the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Pantanowitz)

2. Department of Anatomical Pathology, University of the Witwatersrand and National Health Laboratory Services, Johannesburg, South Africa (Pantanowitz, Michelow)

3. School of Electrical & Information Engineering and Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa (Hazelhurst)

4. Kimia Lab, University of Waterloo, Waterloo, Ontario, Canada (Kalra, Babaie, Tizhoosh)

5. Huron Digital Pathology, Engineering Department, St. Jacobs, Ontario, Canada (Kalra, Choi, Shah). Pantanowitz is now with the Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor

Abstract

Context.— Pathologists may encounter extraneous pieces of tissue (tissue floaters) on glass slides because of specimen cross-contamination. Troubleshooting this problem, including performing molecular tests for tissue identification if available, is time consuming and often does not satisfactorily resolve the problem. Objective.— To demonstrate the feasibility of using an image search tool to resolve the tissue floater conundrum. Design.— A glass slide was produced containing 2 separate hematoxylin and eosin (H&E)-stained tissue floaters. This fabricated slide was digitized along with the 2 slides containing the original tumors used to create these floaters. These slides were then embedded into a dataset of 2325 whole slide images comprising a wide variety of H&E stained diagnostic entities. Digital slides were broken up into patches and the patch features converted into barcodes for indexing and easy retrieval. A deep learning-based image search tool was employed to extract features from patches via barcodes, hence enabling image matching to each tissue floater. Results.— There was a very high likelihood of finding a correct tumor match for the queried tissue floater when searching the digital database. Search results repeatedly yielded a correct match within the top 3 retrieved images. The retrieval accuracy improved when greater proportions of the floater were selected. The time to run a search was completed within several milliseconds. Conclusions.— Using an image search tool offers pathologists an additional method to rapidly resolve the tissue floater conundrum, especially for those laboratories that have transitioned to going fully digital for primary diagnosis.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3