Whole-Blood Glucose and Lactate

Author:

Kost Gerald J.12,Nguyen Tam H.2,Tang Zuping2

Affiliation:

1. Reprints: Gerald J. Kost, MD, PhD, Medical Pathology and Biomedical Engineering, 3453 Tupper Hall, School of Medicine, University of California, Davis, Davis, CA 95616.

2. From Medical Pathology and Clinical Chemistry, University of California, Davis, School of Medicine.

Abstract

Abstract Objective.—To assess the effects of 30 of the most commonly used critical care drugs on measurements obtained with trilayer electrochemical biosensors on a reference analyzer (ABL625-GL), to determine metabolic changes in glucose and lactate in vitro, and to formulate guidelines for whole-blood analysis of these 2 analytes. Design.—Serial measurements were taken of changes in glucose and lactate levels caused by metabolism in whole blood in vitro over time. A parallel control study of drug interference with measurements of glucose and lactate in whole blood and of dose-response relationships in whole-blood samples and in plasma samples also was conducted. Results.—At room temperature, whole-blood metabolism decreased glucose levels −2.3% at 15 minutes, −4.6% at 30 minutes, and −6.4% at 45 minutes. Metabolism increased lactate levels 11.4% at 15 minutes, 20.6% at 30 minutes, and 26.7% at 45 minutes in vitro. Paired differences between drug-spiked and control samples were calculated to determine interference (corrected for metabolism). The threshold for determination of interference was ±2 SD from within-day precision, equal to ±0.18 and ±0.10 mmol/L for glucose and lactate, respectively. Only mannitol (C6H14O6) interfered with glucose and lactate measurements. At a concentration of 24 mg/mL, mannitol decreased whole-blood glucose levels by an average of 0.711 mmol/L (12.8 mg/dL) and whole-blood lactate levels by 0.16 mmol/L (1.4 mg/dL). Mannitol interference with measurements may have resulted from suppression of hydrogen peroxide formation in the enzymatic reactions in the biosensors, repartitioning of water between erythrocytes and plasma, or from other mechanisms. Conclusions.—Most critical care drugs had no significant effects on the trilayer electrochemical biosensors. Whole-blood analysis should be performed within 15 minutes for lactate and within 30 minutes for glucose because of metabolism in vitro. Mannitol effects on glucose measurements may be clinically significant in mannitol-induced acute renal failure and therefore should be considered for appropriate diagnosis and treatment of critically ill patients.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3