Abstract
The paper presents the analysis results of the supersonic flow around a wings tandem using the methods of scientific visualization. Two tandem configurations were considered, differing from each other by the vertical position of the generator wing relative to the plane of symmetry of the main wing. The data are obtained as a result of numerical simulations carried out with the Mach number of the incoming flow M? = 3. In the model the wings were straight, rectangular in plan with sharp front, side and trailing edges with the same chord and the span of the main wing exceeding the span of the generator wing by two times. The generator wing was located at an attack angle of 10° degrees to the incoming flow, the main wing is located at zero attack angle. The simulation was carried out on the basis of URANS equations with the Spalart-Allmaras (SA) turbulence model. Numerical calculations were carried out on the hybrid supercomputer system K-60 at the Keldysh Institute of Applied Mathematics RAS. An approach using the Liutex criterion for the vortex structures identification was applied for scientific visualization of the simulation results.
Publisher
Keldysh Institute of Applied Mathematics
Reference19 articles.
1. Волков К.Н. Методы визуализации вихревых течений в вычислительной газовой динамике и их применение при решении прикладных задач // Научно-технический вестник информационных технологий, механики и оптики. 2014. 3 (91).
2. Epps B.P. Review of Vortex Identification Methods // 55th AIAA Aerospace Sciences Meeting. 2017. AIAA 2017-0989. DOI: 10.2514/6.2017-0989.
3. Знаменская И.А. Методы панорамной визуализации и цифрового анализа теплофизических полей. Обзор // Научная визуализация. 2021. 13 3, с. 125 – 158. DOI: 10.26583/sv.13.3.13.
4. Liu C., Gao Y., Dong X., Wang Y., Liu J., Zhang Y., Cai X., Gui N. / Third generation of vortex identification methods: Omega and Liutex/Rortex based systems // J. Hydrodyn. 2019. 31 2, pp. 205–223.
5. Liu C., Gao Y., Tian S., Dong X. Rortex—A new vortex vector definition and vorticity tensor and vector decompositions // Phys. Fluids. 2018. 30:035103.