Study of Algorithms Based on YOLO Neural Network Architecture in the Problem of Polyp Detection on Colonoscopic Video Data

Author:

Khryashev V.V.ORCID,Kotov N.V.ORCID,Priorov A.L.ORCID

Abstract

An analysis was made of the use of neural network algorithms for the detection of colon polyps obtained during colonoscopy. The Kvasir-SEG image database was used to train and test deep machine learning algorithms. The networks YOLOv6, YOLOR, YOLOv7, YOLOv7X, YOLOv8 previously trained on the basis of MS COCO images were used as neural network architectures. Due to the small volume of images in the Kvasir-SEG database, data augmentation was used. As a result of applying the detection algorithms to the test set of endoscopic images, the highest values of the metrics AP@[0,25..0,75] equal to 98,4 and AP@0,50 equal to 98,6 were obtained for the neural network detector based on the YOLOv8 network. According to the results of comparing the proposed algorithms with analogues, the YOLOv8 assessment showed an increase in the results for the AP@[0.25..0.75] metric by 5.9 in searches with the previous model НАОО<sup>YL</sup>. The results obtained can be used in the development of a video stream analysis system in an endoscopic system operating in real time during colonoscopy studies

Publisher

Keldysh Institute of Applied Mathematics

Reference22 articles.

1. Палевская С.А., Короткевич А.Г. Эндоскопия желудочно-кишечного тракта. М.: ГЭОТАР-Медиа, 2020. 752 c.

2. Куваев Р.О., Кашин С.В. Современное эндоскопическое исследование желудка с использованием методик узкоспектральной и увеличительной эндоскопии: техника проведения и алгоритмы диагностики // Доказательная гастроэнтерология. 2016. Т. 2, № 5. С. 3–13.

3. Lee J. Resection of diminutive and small colorectal polyps: what is the optimal technique? Clinical endoscopy. 2016. vol. 49(4). pp. 355.

4. Convolutional neural network for early detection of gastric cancer by endoscopic video analysis / A. Lebedev [et al.] // Proc. SPIE 11433. Twelfth International Conference on Machine Vision (ICMV 2019).

5. Батухтин Д.М., Пеганова Е.В., Митракова Н.Н. Анализ узкоспектральных эндоскопических изображений на внутренней поверхности пищевода // Вестник Поволжского государственного технологического университета. Серия: радиотехнические и инфокоммуникационные системы. 2014. № 4 (23). С. 45–57.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Colorectal image analysis for polyp diagnosis;Frontiers in Computational Neuroscience;2024-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3