Combined Algorithm for Combining Point Clouds

Author:

Efimov Aleksey IgorevichORCID,Kryuchkova T.N.ORCID,Yaroslavtseva A.I.ORCID

Abstract

The issues of combining three-dimensional surfaces and three-dimensional point clouds are important for solving a number of applied problems: three-dimensional reconstruction of the underlying surface of aircraft, construction of three-dimensional models of objects and a number of others. The report deals with the registration of point clouds, in particular, the algorithm of rigid registration of three-dimensional clouds. A software implementation of an iterative algorithm for combining three-dimensional point clouds is described, its main advantages and disadvantages are analyzed, and a modification of the ICP algorithm is proposed, including preliminary combination of the corresponding parts of the clouds using an approach based on three-dimensional descriptors of key points. The use of a combined algorithm for combining three-dimensional clouds allows you to build dense three-dimensional models of objects based on their separate disparate stereo images. The accuracy and time estimates of the proposed approaches are presented.

Publisher

Keldysh Institute of Applied Mathematics

Reference11 articles.

1. Point-set registration [Электронный ресурс]. URL: https://en.wikipedia.org/wiki/Pointset_registration (дата обращения: 08.12.2022).

2. Iterative closest point [Электронный ресурс]. URL: https://en.wikipedia.org/wiki/Iterative_closest_point (дата обращения: 01.12.2022).

3. Kabsch W. A solution for the best rotation to relate two sets of vectors, Acta Crystallographic a Section A, vol. 32, no. 5, 1976. – Pp. 922-923.

4. Vicente Morell-Gimenez, Marcelo Saval-Calvo, Jorge Azorin-Lopez, Jose Garcia-Rodriguez, Miguel Cazorla, Sergio Orts-Escolano and Andres Fuster-GuilloA Comparative Study of Registration Methods for RGB-D Video of Static Scenes// Sensors. 2014, 14, 8547-8576. DOI: 10.3390/s140508547 (дата обращения: 09.12.2022).

5. L. Maier-Hein, T. R. dos Santos, A. M. Franz, H.-P. Meinzer. Iterative Closest Point Algorithm in the Presence of Anisotropic Noise// German Cancer Research Center, Div. of Medical and Biological Informatics. [Электронный ресурс]. URL: https://ceur-ws.org/Vol574/bvm2010_47.pdf (дата обращения: 12.12.2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3