Deep Learning-based Polygonal Mesh Reconstruction from Point Clouds for Mixed Reality Visualization

Author:

Sorokin Maxim IgorevichORCID,Zhdanov Dmitri DmitrievichORCID,Zhdanov Andrei DmitrievichORCID

Abstract

Mixed reality systems create new forms of interaction between the physical and digital world by overlaying digital elements on the physical environment or creating virtual environments with physical elements. A key component for mixed reality are 3D scanning systems that capture the shape and texture of objects or scenes in the form of point clouds. For effective use of these data in mixed reality applications, they are transformed into polygonal meshes suitable for rendering, animation, and interaction. The proposed method includes the application of ResNet blocks for feature extraction, the use of an autoencoder to obtain latent 3D shapes, and the definition of wall and ceiling geometry using bounding boxes. The method allows obtaining a complete 3D model of the scene from a point cloud using deep learning and geometric analysis. In this work, two datasets were used for training and experiments: ShapeNet and ScanNet. These datasets represent a large and diverse collection of three-dimensional objects and scanned scenes with detailed annotation.

Publisher

Keldysh Institute of Applied Mathematics

Reference17 articles.

1. Liu, N., Lin, B., Lv, G., Zhu, A. X., & Zhou, L. A Delaunay triangulation algorithm based on dual-spatial data organization. // PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science. 2019. № 1-2. (pp. 19-31), doi:10.1007/s41064-019-00067-y

2. Алгоритмы вычислительной геометрии. Выпуклые оболочки: простые алгоритмы / С.А. Ивановский, А.С. Преображенский, С.К. Симончик // Компьютерные инструменты в образовании. 2007. № 6. (С.3-16).

3. Attali D., Lieutier A., Salinas L. Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes // Proceedings of the twenty-seventh annual symposium on Computational geometry. ACM. 2011. (pp. 491-500), doi: 10.1145/1998196.1998276.

4. Guennebaud G., Gross M. Algebraic point set surfaces // ACM Transactions on Graphics (TOG). 2007. Vol. 26, No. 3. Article 23, doi: 10.1145/1275808.1276406.

5. Qi C.R., Su H., Mo K., Guibas L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation // Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE. 2017. (pp. 652–660).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3