Application of Artificial Intelligence in Remote Monitoring Data Processing Tasks

Author:

Gromov Yuri YurievichORCID,Ishchuk Igor NikolaevichORCID,Rodionov V.V.ORCID

Abstract

This article presents a method for classifying multi-time multispectral images of the Earth's surface using the convolutional deep learning neural network U-net. Images of visible and infrared wavelengths were obtained using a multispectral optoelectronic system of an unmanned aerial vehicle and were used to construct orthophotoplanes of the terrain. Based on the data obtained, a neural network was trained to solve the problems of detecting man-made objects. The method of intelligent recognition of remote monitoring objects, based on deep learning and assessments of thermophysical parameters, allows you to create a phono-target environment using a genetic algorithm. This algorithm solves the coefficient inverse problem of thermal conductivity and provides estimates of the thermophysical parameters of materials. To train the model, 18 classes of objects were introduced, which were studied based on the difference in thermal contrast between man-made objects and the background (anthropogenic or natural landscape). The survey of the earth's surface was carried out 6 times during the day with an interval of 4 hours. The experiment was conducted in the summer of 2021, on specific dates of August 4-5. In the tasks of detecting and classifying man-made objects, it was found that the model demonstrates applicability with varying reliability. The conducted research shows that during the operation of the model, the desired classes of objects were discovered.

Publisher

Keldysh Institute of Applied Mathematics

Reference8 articles.

1. Nishara A., Richards S., Breen D., Robertson J., Breen B. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei e Tauhara geothermal field, Taupo, New Zealand. Renewable Energy 86. 2016. p.1256 –1264. [2] Shih-Hong Chio, Cheng-Horng Lin. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan. Sensors, 17. 2017. p. 1-17.

2. Вавилов В.П. Тепловой неразрушающий контроль материалов и изделий // Дефектоскопия. 2017. № 10. C. 34-57.

3. Чулков А.О., Вавилов В.П., Нестерук Д.А. Автоматизированный практический алгоритм идентификации дефектов в процедурах активного теплового контроля // Дефектоскопия. 2018. №4. C. 49-53.

4. Сутырина Н.Е. Дистанционное зондирование земли: учеб. пособие / Е. Н. Сутырина. – Иркутск.: ИГУ, 2013. 38-50 с.

5. Thanh N. Т., Sahli H. and Hao D.N. Finite-difference methods and validity of a thermal model for landmine detection with soil property estimation // IEEE Transactions on geoscience and remote sensing. 2007. № 3. p. 656-674.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3