Numerical Criteria for Assessing the Similarity of Multidimensional Geometric Objects

Author:

Seleznev I.V.1ORCID,Konopatskiy E.V.2ORCID

Affiliation:

1. Donbas National Academy of Civil Engineering and Architecture

2. Nizhny Novgorod State University of Architecture and Civil Engineering

Abstract

The possibility of using statistical numerical criteria for comparison of geometrical objects represented as point sets has been investigated. This approach can be easily generalized to the multidimensional space and can be an effective tool for comparison of multidimensional geometrical objects. If to any continuous process to correspond the continuous geometrical object, the offered approach can be effectively used for an expert estimation of a degree of similarity of objects, processes and the phenomena in many branches of a science and engineering. Based on the results we can conclude that the choice of criterion for assessing the degree of similarity depends on the conditions of the comparing geometric objects problem. In case of superposition of geometrical objects on each other the determination coefficient gives more qualitative results, and in case of comparison of geometrical objects received by means of transformation the Pearson correlation coefficient gives more qualitative results. Considering that Pearson correlation coefficient showed high stability when comparing transformed geometric objects, its use in solving a wide range of problems of expert analysis of biometric data and identity identification, diagnosis of diseases of various etymologies, recognition of handwritten and printed text, acoustic and radio signals is promising.

Publisher

Keldysh Institute of Applied Mathematics

Reference30 articles.

1. Федин И.А., Серов В.А. Интеллектуальные методы обработки информации: алгоритмы распознавания образов // Тенденции развития науки и образования. 2020. № 58-2. С. 37-46. DOI: 10.18411/lj-02-2020-27.

2. Иванько А.Ф., Иванько М.А., Горчакова Я.В. Методы распознавания образов и задачи логического выделения объектов // Научное обозрение. Технические науки. 2019. № 3. С. 36-40.

3. Тормозов В.С. Адаптация модели нейронной сети LSTM для решения комплексной задачи распознавания образов // Программные продукты и системы. 2021. № 1. С. 151-156. DOI: 10.15827/0236-235X.133.151-156.

4. Денисюк А.В. Акустический криптоанализ жидкокристаллических мониторов // Вестник СКУ им. М. Козыбаева. 2020. № 2(47). С. 247-253.

5. Кадуков Е.П., Утимишева И.К. Метод распознавания вида модуляции спектральноэффективных радиосигналов на основе классификации образов радиосигналов в пространстве параметров фазовых диаграмм по критерию минимума евклидового расстояния // Журнал радиоэлектроники. 2020. № 11. С. 11. DOI: 10.30898/1684-1719.2020.11.12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3