Method for Adaptation of Algorithms to GPU Architecture

Author:

Bulavintsev Vadim1ORCID,Zhdanov Dmitry1ORCID

Affiliation:

1. ITMO University

Abstract

We propose a generalized method for adapting and optimizing algorithms for efficient execution on modern graphics processing units (GPU). The method consists of several steps. First, build a control flow graph (CFG) of the algorithm. Next, transform the CFG into a tree of loops and merge non-parallelizable loops into parallelizable ones. Finally, map the resulting loops tree to the tree of GPU computational units, unrolling the algorithm’s loops as necessary for the match. The mapping should be performed bottom-up, from the lowest GPU architecture levels to the highest ones, to minimize off-chip memory access and maximize register file usage. The method provides programmer with a convenient and robust mental framework and strategy for GPU code optimization. We demonstrate the method by adapting to a GPU the DPLL backtracking search algorithm for solving the Boolean satisfiability problem (SAT). The resulting GPU version of DPLL outperforms the CPU version in raw tree search performance sixfold for regular Boolean satisfiability problems and twofold for irregular ones.

Publisher

Keldysh Institute of Applied Mathematics

Reference24 articles.

1. M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Transactions on Computers C-21 (1972) 948–960. URL: http://ieeexplore.ieee.org/document/5009071/. doi:10.1109/TC.1972.5009071.

2. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: A System for LargeScale Machine Learning, in: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), USENIX Association, Savannah, GA, 2016, pp. 265–283. URL: https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.

3. NVIDIA, P. Vingelmann, F. H. Fitzek, CUDA, release: 10.2.89, 2020. URL: https://developer.nvidia.com/cuda-toolkit.

4. J. E. Stone, D. Gohara, G. Shi, OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems, Computing in Science Engineering 12 (2010) 66–73. doi:10.1109/MCSE.2010.69.

5. R. Dolbeau, F. Bodin, G. C. de Verdiere, One OpenCL to rule them all?, in: 2013 IEEE 6th International Workshop on Multi-/Many-core Computing Systems (MuCoCoS), IEEE, 2013, pp. 1–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3