Application of the boundary detection method to the problem of recognizing the situation

Author:

Karandeev Alexander Andreevich1ORCID,Osipov Vladimir PetrovichORCID,Baluta Victor IvanovichORCID

Affiliation:

1. Plekhanov Russian University of Economics

Abstract

This paper presents the results of one of the solutions to the problem of increasing the speed of decision-making by an intelligent agent when modeling the behavior of complex systems on a virtual electronic polygon. Such a training ground is currently considered as an instrumental platform for testing technologies for training intelligent agents in conditions of varying complexity in order to subsequently transfer the developed methods to real objects for solving practical problems. As an example, the control of a robotic device operating in an enclosed space is considered. The article describes the technology of reducing the volume and dimension of the processed data in order to increase the responsiveness to changes in the situation and the development of solutions for moving a robotic device. The technology is based on the preprocessing of video images for the formation of a training sample, as well as the procedure and results of deep learning of a convolutional neural network. The paper uses an open source library of OpenCV computer vision algorithms implemented in C / C++. It is shown that focusing on the selection of object boundaries can significantly reduce the amount of data for analyzing the situation and increase the speed of decision-making by the robot to move.

Publisher

Keldysh Institute of Applied Mathematics

Reference16 articles.

1. В.И. Балута, А.А. Карандеев, В.П. Осипов, Функционал электронного полигона неоконфликтологии, Материалы XIII Международной конференции по прикладной математике и механике в аэрокосмической отрасли (AMMAI’2020), Алушта, 2020, с. 674. URL:http://www.npnj.ru/files/npnj2020_web.pdf.

2. A.A. Karandeev, V.I. Baluta, V.P. Osipov, Electronic Training Polygon for Artificial Intelligence Systems, Proceedings of the 8th International Conference on Computing for Physics and Technology (CPT2020), Nizhny Novgorod, Russia, 2020, pp. 188-192. doi:https://doi.org/10.30987/conferencearticle_5fce2771df93d0.19570965.

3. Д.А. Новиков. Теория управления организационными системами. 2-е изд. 2007, c. 584.

4. А.А. Воронин, М.В. Губко, С.П. Мишин, Д.А. Новиков. Математические модели организаций. 2008.

5. P. Lindes, Intelligence and Agency, Journal of Artificial General Intelligence, 11(2020). doi:10.2478/jagi-2020-0003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3