Neural network algorithms as the cutting edge of self-organization processes

Author:

Smolin Vladimir SergeevichORCID

Abstract

With the creation of strong AI, not only humanity, but the entire life evolution enters a new era. Life, as the most complex and most amazing self-organization process, is difficult to accurately describe, but attempts to identify the basic conditions for its development have been made for a long time ago. As it became clear about 70 years ago, the main condition for the life development is the knowledge accumulation in DNA, making it possible to reproduce life forms that have undergone evolutionary selection. Many other important conditions for the development of “living” self-organization were put forward, which were better suited as research objects than knowledge. Although with the beginning of the neural network revolution in machine learning, it became possible to study on models the processes of acquiring knowledge about the surrounding world without human participation, the researchers inertia not to include the cognition processes in self-organization studies remains. A comparison of traditional and neural network approaches to describe self-organization processes was made. Since only the neural nets describe the acquiring knowledge processes, it is concluded that neural network algorithms constitute the cutting edge of the self-organization processes development.

Publisher

Keldysh Institute of Applied Mathematics

Reference44 articles.

1. Мифы о Менделееве. // https://ru.wikipedia.org/wiki/Менделеев,_Дмитрий_Иванович#Мифы_о_Менделееве

2. 2. https://psyera.ru/filosofiya-atomistov-levkipp-i-demokrit_15993.htm

3. Богданов А. А. Тектология – Всеобщая организационная наука. // Берлин — Санкт-Петербург, 1922. (Переиздание:— М.: Экономика, 1989.)

4. Эшби У. Р. Принципы самоорганизации. // В кн.: Принципы самоорганизации. Под ред. Д.т.н. А.Я. Лернера, М.: «Мир», 1966, С. 314—343.

5. Анохин П.К.. Принципиальные вопросы общей теории функцио-нальных систем… // 1 Принципы системной организации функций. М.: «Наука», с. 5 – 6, 1973.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3