Verification of security properties of the TLS 1.3 extensions

Author:

Nikeshin Alexei Viacheslavovich1ORCID,Shnitman Victor Zinovievich1ORCID

Affiliation:

1. Ivannikov Institute for System Programming of the RAS

Abstract

This paper presents the experience of verifying server implementations of the TLS cryptographic protocol version 1.3. TLS is a widely used cryptographic protocol designed to create secure data transmission channels and provides the necessary functionality for this: confidentiality of the transmitted data, data integrity, and authentication of the parties. The new version 1.3 of the TLS protocol was introduced in August 2018 and has a number of significant differences compared to the previous version 1.2. A number of TLS developers have already included support for the latest version in their implementations. These circumstances make it relevant to do research in the field of verification and security of the new TLS protocol implementations. We used a new test suite for verifying implementations of the TLS 1.3 for compliance with Internet specifications, developed on the basis of the RFC8446, using UniTESK technology and mutation testing methods. The current work is part of the TLS 1.3 protocol verification project and covers some of the additional functionality and optional protocol extensions. To test implementations for compliance with formal specifications, UniTESK technology is used, which provides testing automation tools based on the use of finite state machines. The states of the system under test define the states of the state machine, and the test effects are the transitions of this machine. When performing a transition, the specified impact is passed to the implementation under test, after which the implementation's reactions are recorded and a verdict is automatically made on the compliance of the observed behavior with the specification. Mutational testing methods are used to detect non-standard behavior of the system under test by transmitting incorrect data. Some changes are made to the protocol exchange flow created in accordance with the specification: either the values of the message fields formed on the basis of the developed protocol model are changed, or the order of messages in the exchange flow is changed. The protocol model allows one to make changes to the data flow at any stage of the network exchange, which allows the test scenario to pass through all the significant states of the protocol and in each such state to test the implementation in accordance with the specified program. So far, several implementations have been found to deviate from the specification. The presented approach has proven effective in several of our projects when testing network protocols, providing detection of various deviations from the specification and other errors.

Publisher

Keldysh Institute of Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TLS 1.3 Clients Testing;Proceedings of 24th Scientific Conference “Scientific Services & Internet – 2022”;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3