Tool for snapshotting of aggregated data from streaming data

Author:

Gurianov Artem Igorevich1ORCID

Affiliation:

1. Kazan Branch of Joint Supercomputer Center of the Russian Academy of Sciences

Abstract

In the modern world, streaming data is widespread in a significant number of subject areas. At the same time, there is often a need for stream processing of data in real time. In stream processing, approximate algorithms, which have higher efficiency than exact algorithms, are in high demand, as well as stream state forecasting. In databases, materialized views are used to store query results, but most implementations do not have the ability to update them incrementally. Thus, there is a need in the market for a tool that builds incrementally updated materialized views of streaming data, and also makes it possible to forecast the state of a stream and use approximate algorithms for processing streaming data. In addition, due to the high diversity of streaming data, their sources and algorithms for their processing and forecasting, such a tool should be extensible. The author of the article has developed such a tool. In the article, the architecture and mechanism of functioning of the tool are reviewed. The prospects for its further development are also studied in the article.

Publisher

Keldysh Institute of Applied Mathematics

Reference18 articles.

1. Гурьянова Э.А., Гурьянов А.И. Анализ и перспективы рынка SaaS в Российской Федерации // Вестник экономики, права и социологии. – 2022. – №1. – С. 182–185.

2. Kolajo T., Daramola O., Adebiyi A. Big data stream analysis: a systematic literature review // Journal of Big Data. – 2019. – Vol. 6. – doi: 10.1186/s40537-019-0210-7

3. Маркова В.Д. Влияние цифровой экономики на бизнес // ЭКО. – 2018. – №12 (534). – С. 7–22.

4. Определение потоковой передачи данных // Amazon Web Services (AWS). – URL: https://aws.amazon.com/ru/streaming-data/ (дата обращения 12.05.2023)

5. Ельченков Р.А., Дунаев М.Е., Зайцев К.С. Прогнозирование временных рядов при обработке потоковых данных в реальном времени // International Journal of Open Information Technologies. – 2022. – Т. 10, №6. – С. 62–69.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3