Hardly describable almost polynomial classes of requrrent sequences

Author:

Makeev Sergey Danilovich

Abstract

In this report, we will describe the problem of "hard to describe" classes return sequences, that is, such that the prediction behavior of such sequences is an algorithmically undecidable task. Integer classes will be considered sequences whose generating functions are composed compositions of polynomials (with integer coefficients) and some functions f. The main question under consideration is what should be this f, so that the resulting class is hard to describe. Such functions f we called border. Evidence will be presented that several wide families of functions are boundary. All this evidence stem from one "central" theorem, for proof of which Minsky machine simulations are used sequences, i.e. it is constructively proved that from the system functions "polynomials plus f" (for each of the considered f) it is possible to "build" a universal computing device.

Publisher

Keldysh Institute of Applied Mathematics

Reference4 articles.

1. Марченков С. С., Савицкий И. В. Машины в теории вычислимых функций. М.: МАКС Пресс, 2018.

2. Марченков С. С. О сложности полиномиальных возвратных последовательностей // Проблемы передачи информации 2018. Т. 54, вып. 3. С. 258–262.

3. Холл М. Комбинаторика. М.: Мир, 1970.

4. Conway J. FRACTRAN a simple universal programming language for arithmetic // Open problems in communication and computation 1986 P. 4–26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3