О двух подходах эффективного понижения размерности для задач переноса теплового излучения в многомерной геометрии

Author:

Грабовенская Светлана Александровна1,Grabovenskaya Svetlana Aleksandrovna2,Завьялов Вячеслав Викторович1,Zav'yalov Vyacheslav Viktorovich2,Шестаков Александр Александрович1,Shestakov Aleksandr Aleksandrovich2

Affiliation:

1. ФГУП «РФЯЦ -- ВНИИТФ им. академика Е.И. Забабахина»

2. FSUE «RFNC-VNIITF named after Academ. E.I. Zababakhin»

Abstract

Математическое моделирование нестационарного переноса лучистой энергии в кинетической постановке является весьма трудоемкой задачей. Это связано с нелинейностью решаемой системы и ее большой размерностью. В общем случае кинетическое уравнение переноса решается в 7-мерном фазовом пространстве, что требует больших вычислительных ресурсов. Поэтому исторически предпринимались попытки упростить исходную решаемую систему. Однако упрощающие предположения a priori могут ухудшать качество решения. Существенным шагом вперед стало квазидиффузионное приближение, предложенное В.Я. Гольдиным в 1964 г для переноса нейтронов и ставшее впоследствии одним из эффективных методов решения задач переноса нейтральных частиц. Метод квазидиффузии учитывает кинетические эффекты через коэффициенты, насчитываемые при периодическом решении кинетического уравнения. Существуют и другие подходы к упрощению исходной системы. В 2010 г М.Ю. Козмановым и Н.Г. Карлыхановым для одномерной геометрии была предложена другая модель, идеологически близкая к алгоритму квазидиффузии. В этой модели в уравнение диффузии вводятся коэффициенты, полученные при решении кинетического уравнения. Данный подход активно развивается в РФЯЦ-ВНИИТФ как в практическом, так и в теоретическом плане, и опыт использования позволяет надеяться на его широкое применение. В статье конспективно рассматриваются эти две модели и приводятся результаты расчетов двух тестовых задач в двумерной осесимметричной геометрии.

Publisher

Keldysh Institute of Applied Mathematics

Subject

General Medicine

Reference37 articles.

1. Квазидиффузионный метод решения кинетического уравнения;В. Я. Гольдин;ЖВМ и МФ,1964

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3