Affiliation:
1. ФГУП «РФЯЦ-ВНИИТФ им. академ. Е.И. Забабахина»
2. FSUE «RFNC-VNIITF named after Academ. E.I. Zababakhin»
Abstract
Проблеме построения монотонных схем второго порядка аппроксимации для решения уравнения переноса теплового излучения посвящено большое число работ. Отдельным классом среди них выделяются гибридные схемы, которые в областях немонотонности решения используют монотонные схемы первого порядка, а на гладких участках -- схемы более высокого порядка. Если построение гибридных схем в одномерном случае не вызывает особых трудностей, то в многомерном случае эти схемы могут порождать немонотонность по времени и несходимость итераций изза переключений с одной схемы на другую. Поэтому разработка монотонных схем второго порядка аппроксимации при решении задач переноса теплового излучения до сих пор является актуальной проблемой. Для решения двумерного уравнения переноса теплового излучения в данной работе рассмотрено построение стандартной гибридной схемы, в которой при возникновении немонотонности переходят со схемы второго порядка на схему первого порядка аппроксимации. Хотя такая схема дает монотонное распределение по пространству, показано, что она может приводить к немонотонной зависимости от времени. Приведен другой способ построения гибридной схемы, в которой при переходе со схемы второго порядка на схему первого порядка не происходит возникновения немонотонности по времени.
Publisher
Keldysh Institute of Applied Mathematics
Reference22 articles.
1. Применение разностных схем высокой точности для численного решения гиперболических уравнений;Р. П. Федоренко;ЖМФ и МФ,1962