Reciprocal inputs in arithmetic and tropical circuits

Author:

Seiwert HannesORCID,Sergeev Igor SergeevichORCID,Jukna StasysORCID

Abstract

It is known that the size of monotone arithmetic (+, ·) circuits can be exponentially decreased by allowing just one division “at the very end,” at the output gate. A natural question is: can the size of (+, ·) circuits be substantially reduced if we allow divisions “at the very beginning,” that is, if besides nonnegative real constants and variables x<sub>1</sub>, …, x<sub>n</sub>, the circuits can also use their reciprocals 1/x<sub>1</sub>, ..., 1/x<sub>n</sub> as inputs. We answer this question in the negative: the gain in circuit size is then always at most quadratic. Over tropical (min, +) and (max, +) semirings, division turns into subtraction; so, reciprocal inputs are then -x<sub>1</sub>, …, -x<sub>n</sub>. We give the same negative answer also for tropical circuits. The question of whether reciprocal inputs can substantially speed up tropical (min, +, max) circuits, remains open.

Publisher

Keldysh Institute of Applied Mathematics

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,General Engineering,Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,General Energy,Economics and Econometrics,General Energy,Energy Engineering and Power Technology,Building and Construction,Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference22 articles.

1. Кнут Д. Искусство программирования. Т. 2. Получисленные алгоритмы. — М.: Вильямс, 2004.

2. Левин А. Ю. Алгоритм кратчайшего соединения группы вершин графа // Докл. АН СССР. — 1971. — Т. 200(4). — С. 773–776.

3. Разборов А. А. Нижние оценки монотонной сложности логического перманента // Матем. заметки. — 1985. — Т. 37(6). — С. 887–900.

4. Alon N., Tarsi M. Colorings and orientations of graphs // Combinatorica. — 1992. — V. 12. — P. 125–134.

5. Bellman R. On a routing problem // Quarterly of Appl. Math. — 1958. — V. 16. — P. 87–90.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3