Author:
Chashkin Aleksandr Viktorovich
Abstract
Some results obtained in recent years concerning the average-case complexity of computing Boolean functions by straight line programs with conditional stop are considered. These programs generalize the concept of a Boolean circuit and are a natural model of straight line computations, i.e., computations that do not involve conditional branching or indirect addressing, but allow an early termination under a certain condition. Such computations can be informally described as follows. Computations are executed by a processor with memory consisting of cells. The processor is capable of computing some number of elementary functions, which form the computational basis. At any moment of time, each memory cell is accessible to the processor for both reading and writing data. The processor is controlled by a program that is a sequence of elementary instructions of two types. Every instruction of the first type computes the value of a basis function whose arguments are contained in certain memory cells. The computed result is also placed in a memory cell. An instruction of the second type can terminate the execution of a program. Every such instruction has a single argument, which is contained in a memory cell. If the value of the argument is equal to a certain fixed number, say, unity, then the processor terminates the program execution. If the argument has a different value, then the next instruction of the program is executed. There are special memory cells whose values are declared to be the result of executing the program after its termination. A natural measure of the complexity of such a program is the running time averaged over all possible arguments.
Publisher
Keldysh Institute of Applied Mathematics
Subject
Public Health, Environmental and Occupational Health,Immunology,Insect Science,Ecology, Evolution, Behavior and Systematics,General Mathematics,Analysis,Cardiology and Cardiovascular Medicine,Physiology,Internal Medicine,Literature and Literary Theory,Sociology and Political Science,Cultural Studies,Linguistics and Language,History,Language and Linguistics,Cultural Studies,Stratigraphy,Geology,Literature and Literary Theory,Linguistics and Language,Language and Linguistics,Gender Studies,General Agricultural and Biological Sciences,Aquatic Science,Electrical and Electronic Engineering,Information Systems and Management,General Computer Science
Reference27 articles.
1. Алехина М. А., Грабовская С. М. О надежности неветвящихся программ в произвольном полном конечном базисе // Изв. вузов. Матем.—2012 .—№ 2.—C. 13–22.
2. Алехина М. А., Грабовская С. М. О сколь угодно надежной реализации булевых функций неветвящимися программами с оператором условной остановки в базисах с обобщенной конъюнкцией // ПДМ.—2019.—№ 43.—C. 70–77.
3. Андреев А. Е. О сложности монотонных функций // Вестник МГУ. Серия 1. Математика. Механика.—1985.—№ 4.—С. 83–87.
4. Андреев А. Е. О сложности реализации частичных булевых функций схемами из функциональных элементов // Дискретная математика.—1989.—Т. 1, № 4.— С. 36–45.
5. Забалуев Р. Н. О реализации булевых функций программами одного типа // Вестник МГУ. Серия 1. Математика. Механика.—2005.—№ 5.—С. 9–13.