Asymptotic bounds for average-case complexity of Boolean functions

Author:

Chashkin Aleksandr Viktorovich

Abstract

Some results obtained in recent years concerning the average-case complexity of computing Boolean functions by straight line programs with conditional stop are considered. These programs generalize the concept of a Boolean circuit and are a natural model of straight line computations, i.e., computations that do not involve conditional branching or indirect addressing, but allow an early termination under a certain condition. Such computations can be informally described as follows. Computations are executed by a processor with memory consisting of cells. The processor is capable of computing some number of elementary functions, which form the computational basis. At any moment of time, each memory cell is accessible to the processor for both reading and writing data. The processor is controlled by a program that is a sequence of elementary instructions of two types. Every instruction of the first type computes the value of a basis function whose arguments are contained in certain memory cells. The computed result is also placed in a memory cell. An instruction of the second type can terminate the execution of a program. Every such instruction has a single argument, which is contained in a memory cell. If the value of the argument is equal to a certain fixed number, say, unity, then the processor terminates the program execution. If the argument has a different value, then the next instruction of the program is executed. There are special memory cells whose values are declared to be the result of executing the program after its termination. A natural measure of the complexity of such a program is the running time averaged over all possible arguments.

Publisher

Keldysh Institute of Applied Mathematics

Subject

Public Health, Environmental and Occupational Health,Immunology,Insect Science,Ecology, Evolution, Behavior and Systematics,General Mathematics,Analysis,Cardiology and Cardiovascular Medicine,Physiology,Internal Medicine,Literature and Literary Theory,Sociology and Political Science,Cultural Studies,Linguistics and Language,History,Language and Linguistics,Cultural Studies,Stratigraphy,Geology,Literature and Literary Theory,Linguistics and Language,Language and Linguistics,Gender Studies,General Agricultural and Biological Sciences,Aquatic Science,Electrical and Electronic Engineering,Information Systems and Management,General Computer Science

Reference27 articles.

1. Алехина М. А., Грабовская С. М. О надежности неветвящихся программ в произвольном полном конечном базисе // Изв. вузов. Матем.—2012 .—№ 2.—C. 13–22.

2. Алехина М. А., Грабовская С. М. О сколь угодно надежной реализации булевых функций неветвящимися программами с оператором условной остановки в базисах с обобщенной конъюнкцией // ПДМ.—2019.—№ 43.—C. 70–77.

3. Андреев А. Е. О сложности монотонных функций // Вестник МГУ. Серия 1. Математика. Механика.—1985.—№ 4.—С. 83–87.

4. Андреев А. Е. О сложности реализации частичных булевых функций схемами из функциональных элементов // Дискретная математика.—1989.—Т. 1, № 4.— С. 36–45.

5. Забалуев Р. Н. О реализации булевых функций программами одного типа // Вестник МГУ. Серия 1. Математика. Механика.—2005.—№ 5.—С. 9–13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3