Abstract
Cyclic enumeration of binary words of length n, where each pair of adjacent words differs in exactly one index, is called n-dimensional Gray code. Gray code determines hamiltonian cycle in boolean n-cube. In this paper we give a review of constructions and classifications of Gray codes. Constructions are divided into three main groups: recursive, toric and stream. We also give some of Gray code properties, as an example of applications of these constructions. In particular, we consider spectrum of edge directions, graphs of 2-subwords in transition sequence, local uniformity and others. Also some unresolved problems are given.
Publisher
Keldysh Institute of Applied Mathematics
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,General Engineering,Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,General Energy,Economics and Econometrics,General Energy,Energy Engineering and Power Technology,Building and Construction,Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference47 articles.
1. Быков И. С. О локально равномерных кодах Грея // Дискретный анализ и исследование операций. — 2016. — Т. 23, № 1. — С. 51–64.
2. Быков И. С., Пережогин А. Л. О дистанционных кодах Грея // Дискретный анализ и исследование операций. — 2017. — Т. 24, № 3. — С. 5–17.
3. Быков И. С. 2-факторы без близких ребер в гиперкубе // Дискретный анализ и исследование операций. — 2019. — Т. 26, № 3. — С. 15–25.
4. Евдокимов А. А. О нумерации подмножеств конечного множества // Методы дискретного анализа в решении комбинаторных задач. — 1980. — Т. 34. — С. 8–26.
5. Малых А. Е., Пережогин А. Л. Конструктивный подход к перечислению спектров кодов Грея в булевых кубах малых размерностей // Вестник НГУ. Серия: Информационные технологии. — 2017. — Т. 15, № 4.