Affiliation:
1. University Mouloud Mammeri of Tizi-Ouzou, Algeria
Abstract
In this paper we are interested by the inversion of any stationary and causal autoregressive process of order p, we give some recurrence relations satisfied by the coefficients of the infinite moving average process representation in the sense of Wold decomposition. We compute explicit formula of these coefficients and the corresponding auto-covariance function and we give the minimal value of q in mean square approximation of this autoregressive process with a moving average process of order q-1. The obtained results are explained by examples from the literature and our choice.
Publisher
Keldysh Institute of Applied Mathematics
Reference20 articles.
1. M. Drton and S. Sullivant, “Algebraic statistical models”, Statistica Sinica, 17, 1273-1297 (2007).
2. S. Hoston and S. Ruffa, “Introductory notes to Algebraic statistics”, Rend. Istit. Mat. Univ. Trieste, 37, 39-70 (2005).
3. E. Riccomagno, “A short history of algebraic statistics”, Metrika, 69(2), 397-418 (2009).
4. P.J. Brockwell and R.A. Davis, Introduction to Time Series and Forecasting, Springer, (2002).
5. P. Congdon, “A spatio-temporal autoregressive model for monitoring and predicting COVID infection rates”, Journal of geographical systems, (2022) https://doi.org/10.1007/s10109-021-00366-2.