On the estimation of integral risk of predictor Lipschitz functions in machine learning models

Author:

Chaynikov Yuri SergeevichORCID,Sudakov Vladimir AnatolievichORCID

Abstract

Class imbalance in available training samples for solving machine learning problems in most practical cases complicates the training of predictors that effectively generalize patterns from the training dataset to the general population. This paper investigates the theoretical foundations of the effectiveness of adding synthetic data to the training set. In the assessment of overall risk, two types of errors are highlighted: representation error and deviation error. Practical recommendations are formulated for creating synthetic samples that deviate in their distribution from the representative ones by the density distribution of the argument, with more frequent samples in those areas where the density distribution of the argument has relatively low values, leading to a reduction in the size of the corresponding Voronoi cells and a reduction in the contribution of deviation error to total risk.

Publisher

Keldysh Institute of Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3